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Abstract

In this paper we present a multi-scale finite-volume (MSFV) method to solve elliptic problems with many spatial

scales arising from flow in porous media. The method efficiently captures the effects of small scales on a coarse grid, is

conservative, and treats tensor permeabilities correctly. The underlying idea is to construct transmissibilities that

capture the local properties of the differential operator. This leads to a multi-point discretization scheme for the finite-

volume solution algorithm. Transmissibilities for the MSFV have to be constructed only once as a preprocessing step

and can be computed locally. Therefore this step is perfectly suited for massively parallel computers. Furthermore, a

conservative fine-scale velocity field can be constructed from the coarse-scale pressure solution. Two sets of locally

computed basis functions are employed. The first set of basis functions captures the small-scale heterogeneity of the

underlying permeability field, and it is computed in order to construct the effective coarse-scale transmissibilities. A

second set of basis functions is required to construct a conservative fine-scale velocity field. The accuracy and efficiency

of our method is demonstrated by various numerical experiments.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The level of detail in reservoir description exceeds the computational capability of existing reservoir

simulation. This resolution gap is usually tackled by upscaling the fine-scale description to sizes that can be
treated by a full-featured simulator. In upscaling, the original model is coarsened using a computationally

inexpensive process. In flow-based methods [5], the process is based on single-phase flow. The simulation

study is then performed using the coarsened model. These upscaling methods have proved quite successful.

However, it is not possible to have a priori estimates of the errors that are present when complex flow

processes are investigated using coarse models constructed via simplified settings.
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Various fundamentally different multi-scale approaches for flow in porous media have been proposed to

accommodate the fine-scale description directly. As opposed to upscaling, the multi-scale approach targets

the full problem with the original resolution. The methodology is based on resolving the length and time-

scales of interest by maximizing local operations. Arbogast [1] and Arbogast and Bryant [2] presented a

mixed finite-element method, where the fine-scale effects are localized by a boundary condition assumption

at the coarse element boundaries. Then the small-scale influence is coupled with the coarse-scale effects by

numerical Greens functions. Hou and Wu [8] employed the finite-element approach and constructed spe-

cific basis functions which capture the small scales. Again, localization is achieved by boundary condition
assumptions for the coarse elements. To reduce the effects of these boundary conditions an oversampling

technique can be applied. Recently, Chen and Hou [4] applied these ideas in combination with a mixed

finite-element approach. Another approach by Beckie et al. [3] is based on large eddy simulation (LES)

techniques which are commonly used for turbulence modeling.

Here a new multi-scale finite-volume (MSFV) approach is proposed which employs ideas from the flux-

continuous finite-difference (FCFD) scheme developed by Lee et al. [10] for 2D, Lee et al. [11] for 3D, and

later implemented in a multi-block simulator by Jenny et al. [9]. We also follow some principal ideas

presented by Hou and Wu [8] and Efendiev et al. [6]. Advantages of our method are that it fits nicely into a
finite-volume framework, allows for computing effective coarse-scale transmissibilities, treats tensor per-

meabilities properly, and is conservative at the coarse and fine scales. We will show that the method is

computationally efficient and well suited for massively parallel computation. We also discuss how it can be

applied to 3D unstructured grids and extended to multi-phase flow.

In Section 2 the flow problem is briefly introduced and in Section 3 the multi-scale finite-volume method

is explained. Implementation and efficiency of the method are discussed in Sections 4 and 5, and numerical

results are presented in Section 6. Finally, application to unstructured grids and multi-phase flow are

discussed in Section 7. Summary and conclusions are given in Section 8.

2. Flow problem

We study the following elliptic problem:

r � ðk � rpÞ ¼ f on X; ð1Þ

where p is the pressure and k is the mobility (permeability, K, divided by the fluid viscosity, l). The
source term f represents wells and in the compressible case time derivatives. The permeability hetero-
geneity is a dominant factor in dictating the flow behavior in natural porous formations. The hetero-

geneity of K is usually represented as a complex multi-scale function of space. Moreover, K tends to be a

highly discontinuous full tensor. Resolving the spatial correlation structures and capturing the variability

of permeability requires highly detailed description. The velocity u is related to the pressure field through

Darcy�s law,

u ¼ �k � rp: ð2Þ

On the boundary oX the flux q ¼ u � m is specified, where m is the boundary unit normal vector pointing

outward. Eqs. (1) and (2) describe incompressible flow in porous media. These equations apply for both
single and multi-phase flows when appropriate interpretations of the mobility coefficient k and velocity are

made. This elliptic problem is a simple, yet representative, description of the type of systems that must be

handled efficiently by a subsurface flow simulator. Moreover, the ability to handle this limiting case of

incompressible flow ensures that compressible systems can be treated consistently.
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3. Multi-scale finite-volume (MSFV) method

We derive a multi-scale approach which results in effective transmissibilities for the coarse-scale problem.

Once the transmissibilities are constructed, the method, which employs ideas from the flux-continuous fi-

nite-difference (FCFD) scheme developed by Lee et al. [11], does not differ from a finite-volume scheme

using multi-point stencils for flux discretization. The approach is conservative and treats tensor perme-

abilities correctly. It can be easily applied by existing finite-volume codes, and once the transmissibilities are

computed, it is computationally very efficient. In computing the effective transmissibilities, we employ
similar closure assumptions as in the multi-scale finite-element method of Hou and Wu [8]. It is a crucial

property of our multi-scale method that two sets of basis functions are employed. The first set has to be

computed in order to construct transmissibilities. A second set of locally computed basis functions allows

reconstruction of the fine-scale velocity field from the coarse solution. It is important that we design these

basis functions such that the reconstructed fine-scale solution is fully consistent with the transmissibilities,

and that it satisfies the proper mass balance on the small scale.

3.1. Finite-volume method

Here, we briefly explain the cell-centered finite-volume method. To solve problem (1) we partition X into

smaller volumes f�XXig. A finite-volume solution then satisfiesZ
�XXi

r � udX ¼
Z
o�XXi

u � �mmdC ¼ �
Z
�XXi

f dX; ð3Þ

for each volume �XXi, where �mm is the unit normal vector of the volume interface o�XXi pointing outward. The

challenge is to find a good approximation for u � �mm at o�XXi. In general the flux is expressed as

u � �mm ¼
Xn

k¼1

T k �ppk: ð4Þ

Eq. (4) is a linear combination of the pressure values, �pp, in the volumes of the domain. The total number of

volumes is n and T k denotes transmissibility. By definition, the fluxes (4) are continuous across the inter-

faces and as a result the finite-volume method is conservative.

3.2. Construction of the effective transmissibilities

The MSFV method results in multi-point stencils for the coarse-scale fluxes. For the following de-

scription, we use the orthogonal 2D grid shown in Fig. 1 and assume that there exists an underlying fine
grid containing the fine-scale permeability information. To compute the transmissibilities a dual grid is

Fig. 1. Coarse 2D grid with dual volume ~XX.
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used, which is analogous to our previous FCFD method [10,11]. A control volume of the dual grid, ~XX, is

constructed by connecting the volume mid-points of four adjacent grid-blocks. To relate the fluxes across

the volume interface segments which lie inside ~XX to the finite-volume pressures �ppk ðk ¼ 1; 4Þ in the four

adjacent volumes, we define the local problem

r � k � rpð Þ ¼ 0 on ~XX: ð5Þ

For an elliptic problem, Dirichlet or Neumann boundary conditions are to be specified on o~XX. Ideally, the

imposed boundary conditions should approximate the true flow conditions experienced by the sub-domain

in the full system. Obviously, these boundary conditions can be time- and flow-dependent. Since the sub-

domain is embedded in the whole system, Wallstrom et al. [12] found that a constant pressure condition at

the sub-domain boundary tends to overestimate flow contributions from high permeability areas. If the

correlation length of permeability is not much larger than the grid size, the flow contribution from high
permeability is not proportional to the nominal permeability ratio. The transmissibility between two grids is

a harmonic mean that is closer to the lower permeability. As a result, uniform flux conditions along the

boundary often yield much better numerical results for a sub-domain problem than linear or constant

pressure conditions. Hou and Wu [8] also proposed solving a reduced problem

o

oxt
kij

op
oxj

� �
t

¼ 0; ð6Þ

to specify the boundary conditions for the local problem. The subscript t denotes the component parallel to

the boundary of the dual control volume ~XX (for Eq. (6) and the following part of this paper we use the

Einstein summation convention). The elliptic problem on ~XX with boundary conditions (6) on o~XX can be

solved by any appropriate numerical method. In order to obtain a solution that depends linearly on the

pressures �ppk ðk ¼ 1; 4Þ, we solve four elliptic problems, one for each cell-center pressure. For instance, to get

the solution for pressure �pp1 we set �ppk ¼ d1k. The four solutions are our dual basis functions ~UUk ðk ¼ 1; 4Þ in
~XX, and the solution of the local elliptic problem in ~XX is the linear combination

p ¼
X4

k¼1

�ppk ~UUk: ð7Þ

Accordingly, the flux q across the volume interfaces can be written as a linear combination

q ¼
X4

k¼1

�ppkqk; ð8Þ

where qk ðk ¼ 1; 4Þ are the flux contributions from the corresponding dual basis functions. Given all
~UUk ðk ¼ 1; 4Þ from all ~XX. We compute the effective transmissibilities, which can be used for finite-volume

simulations, by assembling the integral flux contributions across the volume interfaces.

Note that the domain ~XX can have any fine-scale distribution of k. Of course the boundary condition given

by (6) is an approximation that decouples the local problems. The MSFV and global fine-scale solutions are

identical, only if (6) happens to capture the exact fine-scale pressure solution. However, the numerical ex-

periments clearly indicate that Eq. (6) is an excellent approximation of the boundary condition.

Although the MSFV approach is a finite-volume method, it strongly resembles the multi-scale finite-
element method by Hou and Wu [8]. The construction of the dual basis functions is almost identical,

though in the MSFV method they are represented on the dual grid. The main difference is that the MSFV

method is a cell-centered finite-volume scheme and is conservative. On the other hand, the mass matrix in

the multi-scale finite-element method is constructed based on the variational principle and does not ensure
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local conservation. In the following section we will illustrate the importance of a fine-scale velocity field that

is conservative.

3.3. Reconstruction of a conservative fine-scale velocity field

Fluxes across the coarse volume interfaces can be accurately computed by multi-scale transmissi-

bilities. In some cases one is also interested in accurately representing the small-scale velocities (e.g., to

predict the distribution of solute transported by the fluid). A straightforward way would be to use the

dual basis functions of (7), but then the reconstructed fine-scale velocity field is in general discon-

tinuous at the volume interfaces of the dual grid. Therefore, large errors can occur in the divergence

field, and local mass balance is violated. Note that mass conservation is always satisfied for the coarse

solution.
Here, we describe how to construct a second set of local basis functions that is fully consistent with the

fluxes across the volume interfaces given by the dual basis functions. This second set of basis functions

allows us to reconstruct a conservative fine-scale velocity field. Fig. 2 shows the coarse grid with nine

adjacent volumes (denoted by the numbers 1–9) and the corresponding dual grid (four of the volumes of the

dual grid are denoted by the letters A, B, C and D). Also shown is the underlying fine grid. To explain the

reconstruction of the fine-scale velocity, we focus on the mass balance of volume 5. The coarse solution

together with the dual basis functions provide us with the fine-scale fluxes q across the interface of volume

5. To obtain a proper representation of the fine-scale velocity field in coarse volume 5, we ensure that (i) the
fine-scale fluxes across an interface of coarse volume 5 are matching, and (ii) the divergence of the fine-scale

velocity field within the coarse volume satisfies

r � u ¼
R
o�XX5

qdCR
�XX5

dX
; ð9Þ

where �XX5 is the coarse volume. The fine-scale flux q across the boundary of volume 5 depends on the coarse

pressure solutions in volumes 1–9. Therefore, the fine-scale velocity field within volume 5 can be expressed

as a superposition of basis functions Ui ði ¼ 1; 9Þ. With the help of Fig. 3, which depicts the needed dual
volumes, we describe the construction of the fine-scale basis functions Ui. Each coarse volume pressure
�ppi ði ¼ 1; 9Þ contributes to the fine-scale flux q. For example, let the contribution of the pressure in volume 2

Fig. 2. Coarse grid with nine adjacent coarse volumes (bold solid lines) with the corresponding dual grid (bold dashed lines); also

shown is the underlying fine grid (thin dotted lines).
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be qð2Þ. Note that qð2Þ is composed of contributions qð2ÞA and qð2ÞB coming from the dual basis functions as-

sociated with node 2 of volume A and volume B, respectively. To compute the fine-scale basis function

associated with the pressure in volume i we set �ppj ¼ dij, and construct the pressure field given by

p ¼
X

k2fA;B;C;Dg

X9

j¼1

�ppj ~UUj
k: ð10Þ

From the pressure field we compute the fine-scale fluxes q. These fluxes provide the proper boundary
condition for computing the fine-scale basis function Ui. To solve the elliptic problem

r � k � rpð Þ ¼ f 0 on �XX5; ð11Þ

with the boundary conditions described above, we first have to ensure solvability. This is achieved by

setting

f 0 ¼
R
o�XX5

qdCR
�XX5

dX
; ð12Þ

which is an equally distributed source term within �XX5. Finally, the solution of the elliptic problem, (11) and

(12), is the fine-scale basis function for volume 5 associated with the pressure in volume i. The small-scale

velocity field is extracted from the superposition

p ¼
X9

j¼1

�ppjUj
5: ð13Þ

It is important to note that for incompressible flow, this velocity field is divergence free everywhere. We just

showed that computing the fine-scale basis functions requires solving nine small elliptic problems, which are

of the same size as those for the transmissibility calculations. Note that this step is a preprocessing step and

has to be done once only. Furthermore, the construction of the fine-scale basis functions is independent and

therefore perfectly suited for parallel computation. The reconstruction of the fine-scale velocity field is a
simple superposition and is performed only in regions of interest.

Fig. 3. Flux contributions qð2ÞA and qð2ÞB from the pressure in volume 2.
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4. Implementation of the MSFV method

In this section we discuss the necessary steps and implications on the data structure when the MSFV

method is implemented. The algorithm consists of six major parts:

1. Computation of transmissibilities for coarse-scale fluxes.

2. Construction of fine-scale basis functions U.

3. Computation of the coarse solution at the new time level.

4. Reconstruction of the fine-scale velocity field in regions of interest.
5. Solution of the transport equations.

6. Re-computation of transmissibilities (part 1) and fine-scale basis functions (part 2) in regions where

the total mobility changed.

Parts 1–4 describe a two-scale approach. The methodology can be applied recursively with successive levels

of coarsening. In cases of extremely fine resolution [7], this multi-level approach should yield scalable

solutions. Parts 5 and 6 account for transport and mobility changes due to evolving phases (see Section 7.3)

and are not discussed further in this paper.

Part 1 is a preprocessing step. The transmissibility calculations can be done in a stand alone module
(T -module) and are well suited for parallel computation. The transmissibilities can be written to a file for

use by any finite-volume simulator that can handle multi-point flux discretization. In order to follow the

descriptions of Section 3.2 one has to do the following: The fine-scale grid with the permeability field and

the coarse finite-volume grid have to be passed into the T -module, the dual control volumes have to be

constructed (one for each node of the coarse grid), and for each dual control volume ~XX the dual basis

functions ~UU have to be constructed by solving local elliptic problems within ~XX. Therefore the permeability

field on the fine grid is used, and the boundary conditions (6) are applied. In cases where the fine and

coarse grids are nonconforming (e.g., if unstructured grids are used), oversampling can be applied as
discussed in Section 7.2. Finally, the integral fluxes across the single volume interfaces can be extracted

from the dual basis functions ~UU and by assembling them one obtains the MSFV-transmissibilities. Part 1

can be viewed as an upscaling procedure. That is, the constructed coarse solutions are designed to ac-

count, in some manner, for the fine-scale description of the permeability in the input model. Thus, part 1

is a separate preprocessing step to coarsen the original model to a size manageable by a conventional

reservoir simulator.

Part 2, which can be isolated in a separate U-module, is only necessary if one is interested in re-

constructing the fine-scale velocity field from the coarse solution. As described in Section 3.3, if the dual
basis functions are used in reconstructing the fine-scale velocity field, large mass balance errors occur.

Here we describe the steps necessary to compute the fine-scale basis functions U, which can be used to

reconstruct a conservative fine-scale velocity field. The procedure, which follows the description of

Section 3.3, has to be performed only once at the beginning of the simulation and is well suited for

parallel computation. The fine-scale grid with its corresponding permeability field, the coarse finite-

volume grid and the dual basis functions ~UU are passed into the U-module. For each adjacent dual volume
~XX of volume �XX, local elliptic problems have to be solved within �XX. The boundary conditions are obtained

from the dual basis functions ~UU as described in Section 3.3. Finally the result is a set of fine-scale basis
functions U which must be stored. In many cases the fine-scale velocity field has to be reconstructed in

certain regions only.

Part 3 can be performed by any multi-point stencil finite-volume code by using the MSFV-transmissi-

bilities for the flux calculation. These coarse fluxes effectively capture the large-scale behavior of the so-

lution without resolving the small scales.

Part 4 is straight forward. Reconstruction of the fine-scale velocity field in regions of in-

terest is achieved by superposition of the fine-scale basis functions U as described in Section

3.3.
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Of course, many variations of the MSFV method can be devised. It is important, however, that con-

struction of the transmissibilities and fine-scale basis functions U can be done separate from the simulator.

Next, we analyze the computational efficiency of the MSFV method.

5. Computational efficiency

In order to analyze the computational efficiency of the MSFV method we introduce the following

definitions:

and assume that tlðnÞ ¼ ctmna, where c and a are constants. It is also assumed that b is the average

fraction of the reservoir for which the fine-scale velocity has to be reconstructed each time step. We

consider one phase flow only and therefore the computational cost of parts 5 and 6 in the previous
section are not discussed. Next the required CPU times for the various parts of the algorithm are es-

timated.

For part 1, there are nNaN problems with an average size of nv=nV to be solved. Therefore the estimated

CPU time for the transmissibility calculations is

t1 � nNaNctm
nv
nV

� �a

; ð14Þ

which does not include oversampling. The work required to reassemble the fluxes to get the transmissi-

bilities is assumed to be negligible. For part 2, nVðaV þ 1Þ problems with an average size of nv=nV must be

solved. The estimated CPU time for the transmissibility calculations is

t2 � nVðaV þ 1Þctm
nv
nV

� �a

; ð15Þ

which ignores oversampling. Part 3 requires the solution of a coarse problem of size nV. The estimated
time is

t3 � ctmðnVÞant: ð16Þ

In part 4, the fine-scale velocity field has to be reconstructed each time step for a fraction b of the whole

reservoir. This is done by superposition and the required CPU time is

t4 � tmnvðaV þ 1Þntb: ð17Þ

Parts 1, 2 and 4 are well suited for parallel processing.

Example. Consider a structured 300 300 300 fine grid. Let the coarse grid dimension be

30 30 30. Then nv ¼ 2:7 107, nV ¼ 2:7 104, nN ¼ 29; 791, aN ¼ 8 and aV ¼ 26. We take c � 10,

a � 1:5 and b � 0:2 and get

nv number of volumes of the fine grid

nV number of volumes of the coarse grid

nN number of nodes of the coarse grid

nt total number of time steps

aN average number of adjacent coarse volumes to a coarse node

aV average number of adjacent coarse volumes to a coarse volume

tlðnÞ CPU time to solve a linear system with n unknowns

tm CPU time for one multiplication
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t1 � 7:5 1010tm;

t2 � 2:3 1011tm;

t3 � 4:4 107tmnt;

t4 � 1:5 108tmnt:

The estimated time to solve the fine problem is

tf � 1:4 1012tmnt:

Table 1 shows the estimated speedup for different time-step numbers (without considering parallel com-

puting). Of course this result depends strongly on the assumptions, especially about the value for a, but it is
apparent that the MSFV method provides a very efficient way to obtain an accurate fine-scale velocity field.

Note that for multi-phase flow, the transmissibilities and the fine-scale basis functions must be recomputed

in regions of significant mobility change.

6. Numerical studies

In order to demonstrate the performance of the MSFV method, we present numerical studies with a

broad range of permeability fields. The first test case deals with a homogeneous permeability distribution;

the permeability field for the second one is random. Geostatistically generated permeability fields are

employed in the remaining examples. Fields with high variability as well as isotropic and anisotropic

correlation structures are examined.

6.1. Test case

For all the following studies we consider the same configuration with different permeability fields. The

physical domain is ½0; 1�  ½0; 1�, an injector is located at ð1=12; 1=12Þ and a producer at ð11=12; 11=12Þ.
The injection and production rates are �1 and 1, respectively. Fig. 4 shows the 30 30 fine grid (thin
lines) which carries the permeability field. The bold lines represent the coarse 5 5 grid which is used for

the coarse-scale computation. For the results presented in this section we used the fine-scale basis

functions U to reconstruct the fine-scale pressure and velocity fields from the coarse solution. Henceforth,

when we refer to a multi-scale (MS) solution we mean the fine-scale solution reconstructed from the

coarse solution.

We use particle tracking to evaluate the accuracy of the reconstructed velocity fields. Although not an

efficient way to solve transport problems, particle tracking is very sensitive and is well suited to study the

quality of the velocity field. Fig. 5 shows the initial uniform distribution within the computational domain.
To minimize errors due to the well location, we exclude the coarse volume containing the injector. We

Table 1

Ratio of CPU times for the fine solution and the MS solution dependent on the number of time steps nt

nt tf=tms

1 5

10 46

100 432

1000 2828

10,000 6355
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found that except close to the wells, the pressure field is not very sensitive to the location of the well within a

coarse volume. In all the following scatter plots the wells are shown by dark squares which have the size of a

volume. We note that resolution of the fine-scale behavior near the well requires special handling and will
be addressed in later papers.

Fig. 4. 30 30 fine grid (thin lines) with 5 5 coarse grid (bold lines).

Fig. 5. Tracer particles at initial time.

56 P. Jenny et al. / Journal of Computational Physics 187 (2003) 47–67



6.2. Homogeneous permeability field

Fig. 6 shows the fine and MS pressure solutions (thin and bold isolines, respectively) for a homogeneous

permeability field with K � 1. This simple case proves that the MSFV method also has potential as a highly

accurate numerical method even in the absence of a complex permeability structure.

6.3. Random permeability field

The permeability distribution for this test case is given by K ¼ 0:1þ 50ð1þ sinð10ðxþ yÞÞÞn (as shown in

Fig. 7(a)), where n is a random variable equally distributed between 0 and 1. Fig. 7(b) shows the pressure

isolines of the fine and MS solutions (thin and bold lines, respectively). It can be seen that the two solutions

are very close, and that the pressure levels are accurately predicted by the MS solution. Figs. 8(a) and (b)

show tracer particles after 0.5 pvi for the fine and MS velocity fields, respectively. The ability of the MS

solution to reproduce the small structures of the tracer front is remarkable.
We now demonstrate the importance of a divergence free fine-scale velocity field. Fig. 9 shows the tracer

particles after 0.5 pvi as before, but the fine-scale velocity field was constructed using the dual basis

functions ~UU, instead of the fine-scale basis U. Since this velocity field is not continuous, the particles bunch

up and most of the information about the front is lost. This may not be as important, if a hyperbolic

continuum equation is solved instead. It is evident, however, that mass balance errors occur at the fine

scale, unless we ensure that the fine-scale velocity is conservative.

6.4. Permeability field with isotropic correlation structure

The permeability field for this test case was generated geostatistically. The mean and variance of logðKÞ
are 0 and 3, respectively. The correlation structure is isotropic with lx ¼ ly ¼ 0:3, where l is the correlation
length. Fig. 10 shows the permeability field. The scatter plots in Fig. 11 show the tracer particles after 0.2

pvi (the fine solution in the left and the MS solution in the right plot). As in the previous examples, it can be
observed that the velocity field of the MS solution compares very well with the fine solution.

Fig. 6. Pressure isolines from the example in Section 6.2: bold lines from the MS solution, thin lines from the fine solution.
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6.5. Permeability field with anisotropic correlation structure

In this example, we consider a geostatistically generated permeability field with lx ¼ 0:3, ly ¼ 0:03 and
for which the mean and variance of logðKÞ are 0 and 9, respectively. The field is shown in Fig. 12. Scatter

plots after 0.2 and 0.4 pvi are presented in Figs. 13 and 14, respectively. In both figures, the fine solution is

in the left plot and the MS solution is in the right plot. Again, the agreement is excellent. It can be seen that

in some volumes the particles hardly evolved which is due to the high variance of the permeability field.

Fig. 8. Tracer particles after 0.5 pvi from the example in Section 6.3: (a) fine solution on a 30 30 grid, (b) MS solution with a 5 5

coarse grid; the dark squares mark the wells.

Fig. 7. From the example in Section 6.3: (a) permeability field, (b) pressure isolines; bold lines from the MS solution, thin lines from

the fine solution.
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Upscaling of such low permeability regions opens the possibility of actually upscaling small geometrical

features of a reservoir.

In the next example the permeability field has a longer correlation structure with lx ¼ 0:03 and ly ¼ 0:6.
The mean and variance of logðKÞ are 0 and 3, respectively. Fig. 15 shows the permeability field. Some

discrepancy between the fine and MS solution can be observed in Fig. 16 which shows the scatter plots after

0.2 pvi. In the MS solution (right plot) it can be seen that the thin finger in the center of the domain is

slightly longer than in the fine solution (left plot). Later, at breakthrough, the agreement is much better, as

shown in Fig. 17.

The test cases presented in this section confirm the excellent agreement of the MS solution with the fine

solution for a broad range of permeability fields. Our numerical studies demonstrate that the MSFV

Fig. 9. Tracer particles after 0.5 pvi from the example in Section 6.3: MS solution on a 5 5 coarse grid, here the reconstructed fine-

scale velocity field is not divergence free.

Fig. 10. Permeability field from the example in Section 6.4.
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method not only yields accurate coarse fluxes, but it also allows for reconstructing a fine-scale velocity field

with proper divergence behavior. Particle tracking studies as well as pressure contour maps demonstrate the
excellent agreement between the MS and fine solutions for a broad range of test cases.

7. Discussion

We have demonstrated that the MSFV method is very powerful for problems of single-phase flow

on structured grids. Next, convergence studies show that the MSFV method is consistent with the fine

Fig. 11. Tracer particles after 0.2 pvi from the example in Section 6.4: (a) fine solution on a 30 30 grid, (b) MS solution with a 5 5

coarse grid; the dark squares mark the wells.

Fig. 12. Permeability field from the first example in Section 6.5.
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solution. Furthermore, we explain how the MSFV method can be extended for unstructured grids and

multi-phase flow problems.

7.1. Convergence

The convergence as the small scale approaches zero is an important property in homogenization-related
studies. In our problems, however, the limit is the discrete fine-scale problem which is captured exactly

when the coarse grid employed by the MSFV method coincides with the given fine grid. We studied the

Fig. 13. Tracer particles after 0.2 pvi from the first example in Section 6.5: (a) fine solution on a 30 30 grid, (b) MS solution with a

5 5 coarse grid; the dark squares mark the wells.

Fig. 14. Tracer particles after 0.4 pvi from the first example in Section 6.5: (a) fine solution on a 30 30 grid, (b) MS solution with a

5 5 coarse grid; the dark squares mark the wells.
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convergence behavior of the MSFV method as a function of coarse-grid resolution. We present the results

for a test case similar to the one explained in Section 6.1 (Fig. 4). The permeability field has a correlation

structure with lx ¼ 0:03 and ly ¼ 0:6 and the mean and variance of logðKÞ are 0 and 3, respectively (Fig. 18

shows the permeability field). We used a fine grid with a resolution of 100 100. The error of a MS solution

is defined as the infinity norm of the difference between the fine and the MS pressure solution, normalized

by the pressure range in the fine solution. Fig. 19 shows the error for coarse grids with 50 50, 25 25,

10 10 and 5 5 volumes. It can be observed that the multi-scale solution converges, as the coarse grid is
refined. Fig. 19 also indicates that the error remains very small up to a coarsening factor of approximately

10, but then increases substantially. Certainly, the appropriate level of coarsening is problem-dependent.

Fig. 15. Permeability field from the second example in Section 6.5.

Fig. 16. Tracer particles after 0.2 pvi from the second example in Section 6.5: (a) fine solution on a 30 30 grid, (b) MS solution with a

5 5 coarse grid; the dark squares mark the wells.
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7.2. Unstructured grids

Although the MSFV method is explained for structured grids, the extension for unstructured grids is

straightforward. Again, for simplicity we explain everything in 2D, but the ideas are the same for 3D. First

we discuss how to map a permeability field from a fine grid onto any coarse grid which is a necessary step to

deal with unstructured grids.
In many cases the permeability field is represented on a fine grid which is not aligned with the com-

putational grid and has to be mapped. Here, we describe an oversampling technique proposed by Hou and

Wu [8]. Although designed to overcome grid resonance effects, this technique allows mapping a perme-

Fig. 17. Tracer particles after 0.4 pvi from the second example in Section 6.5: (a) fine solution on a 30 30 grid, (b) MS solution with a

5 5 coarse grid; the dark squares mark the wells.

Fig. 18. Permeability field.
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ability field from one grid onto another. This is illustrated in Fig. 20, which shows a fine permeability grid

(thin lines) that is misaligned with a coarse computational grid (bold lines). Also shown is the dual grid

(dashed bold lines) and one of the dual control volumes (light dark color). In order to get the dual basis

functions associated with volumes 1–4, we first solve for the four intermediate basis functions ~WWa;b;c;d in the
dark region. The dual basis functions ~UUi ði ¼ 1; 4Þ are then obtained from the linear combination

Ui ¼
X

j2fa;b;c;dg
cijW

j for 16 j6 4; ð18Þ

where cij are the constants determined by the condition UiðxjÞ ¼ dij. Note that the dual basis functions
constructed with the oversampling method may be discontinuous at the element boundaries. In general,

Fig. 20. Oversampling to map the permeability field from a fine grid (thin lines) onto a coarse computational grid (bold lines); the

dashed bold lines show the dual grid; also shown is one of the dual control volumes (light dark color) and a corresponding over-

sampling region.

Fig. 19. Infinity norm of the pressure error for coarse grids with 5 5, 10 10, 25 25 and 50 50 volumes.
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however, oversampling reduces the effects of the imposed boundary conditions on the computed dual basis

functions.

Fig. 21 shows an unstructured grid (thin lines) with a dual control volume ~XX (bold lines). To compute the

transmissibilities one can apply the same procedure as for structured grids combined with the oversampling

technique, but now six volumes (volumes 1–6) are involved for the dual control volume. Fig. 22 shows the

dual control volume (light dark region) and the underlying fine grid. The dark region is the corresponding
oversampling domain on which the elliptic problems are solved (one for each of the six cells).

7.3. Multi-phase flow

We briefly want to discuss what has to be considered for the elliptic problem, if multi-phase flow is
involved. Here we do not address the multi-scale transport problem. For generality we make the as-

sumption that the saturation field is updated on a fine-scale grid.

With more than one phase, the tensor k in Eq. (1) becomes a function of the saturation. Therefore, the

local elliptic problems, which determine the dual basis functions, change with time. Nevertheless, the

transmissibilities and the fine-scale basis functions have to be recomputed only for those volumes where

the saturation gradients change. This is illustrated in Fig. 23 which shows a saturation front propagating

through a domain discretized by a 15 15 coarse grid. The refined grid near the front indicates that for the

corresponding control volumes, the dual basis functions have to be recomputed in order to account for
changes of the mobility field. Since in general only a small fraction of a reservoir is affected by large changes

Fig. 21. Coarse unstructured 2D grid with dual volume ~XX.

Fig. 22. Unstructured grid (bold lines) with a dual control volume (light gray region); shown is also the corresponding oversampling

domain (dark region) on which the elliptic problems are solved (one for each of the six cells).
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in the saturation field, computation of the transmissibilities and reconstruction of the fine-scale basis

functions is expected to be small in terms of computational effort.

8. Conclusions

A new multi-scale finite-volume method for elliptic problems describing flow in porous media has been

developed, tested and analyzed. The method, which is based on a flux-continuous finite-difference ap-

proach, is conservative and treats full tensor permeabilities and nonorthogonal grids correctly. The cal-

culated transmissibilities account for the fine-scale effects. Once they are computed, these transmissibilities

can be used by any finite-volume code that can handle multi-point flux discretizations. Specifically con-

structed fine-scale basis functions allow for reconstructing a fine-scale velocity field that is conservative. The
construction of the transmissibilities and of the fine-scale basis functions can be done in parallel and has to

be done once only. We outlined how the ideas can be extended to unstructured grids and multi-phase flow.

Finally, various numerical examples demonstrate the accuracy of the method and tracer particle studies

show that the fine-scale velocity field can be reconstructed accurately from the coarse solution. The extra

computational effort compared with coarse-scale simulations is mainly due to a preprocessing step and

becomes insignificant after a large number of time steps.
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